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Solution 10

1. Determine which of the following sets are dense, open dense, nowhere dense, of first cate-
gory and residual in R (you may draw a table):
(a) A={n/2™: n,m € Z},
(b) B, all irrational numbers,
(C) 02{071’1/271/37} )
() E={z: 2°+32x—-6=01},
(f) F=Ug(k,k+1),ke N,
Solution. (a) A is dense, not open, not nowhere dense, of first category and not residual.

(b) B is dense, not open, not nowhere dense, of second category and residual.

(¢) C is not dense, not open (closed in fact), nowhere dense, of first category and not
residual.

(d) D is not dense, not open (not closed), nowhere dense, of first category and not residual.

(e) E is the finite set {(—3 4+ v/33)/2, (=3 —v/33)/2}. It is not dense, not open (closed in
fact), nowhere dense, of first category and not residual.

(e) F is dense, open, not nowhere dense, of second category and residual.
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2. Determine which of the following sets are dense, open dense, nowhere dense, of first cate-
gory and residual in C[0,1] (you may draw a table):

(a) A, all polynomials whose coefficients are rational numbers,
(b) B, all polynomials,

(c) C={f: [y flz)dz #0}

(d) D=A{f: f(1/2)=1}.

Solution. (a) A is dense (and countable too), not open, not nowhere dense, of first
category, and not residual.

(b) B is dense (and uncountable), not open, not nowhere dense, of first category and not
residual. ( B can be expressed as the countable union of P, where P, is the set of all
polynomials of degree not exceeding n. Each P, is closed and nonwhere dense.)

(c) C is dense, open, not nowhere dense, of second category, and residual.

(d) D is not dense, not open (closed in fact), nowhere dense, of first category, and not
residual.
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3. Use Baire category theorem to show that transcendental numbers are dense in the set of
real numbers.

Solution. A number is called algebraic if it is a root of some polynomial with integer
coefficients and it is transcendental otherwise. Let A be all algebraic numbers and T be all
transcendental numbers. We know that A is a countable set {a;}. Let A, = {a1,--- ,an}
so A =, Ax is a countable union of closed and nowhere dense sets A,. Hence A is of
first category. As 7T is the complement of A, it is a residual set. Since R is complete, T
is dense by Baire category theorem.

Alternatively, you may argue that the complement of each A,, is open and dense, and since
T is the intersection of all these complements, by Baire category theorem, any countable
intersection of open dense sets in a complete metric space is dense, hence T is dense.

4. A point p in a metric space X is called an isolated point if there is an open set G such
that G N X = {p}, that is, {p} is open. A set E in X is a perfect set if it is closed and
contains no isolated points.

(a) For each z in the perfect set E, there exists a sequence in E consisting of infinitely
many distinct points converging to x.

(b) Every perfect set is uncountable in a complete metric space.

Solution. (a). For each n > 1, as (By/,(z)\ {x})[) £ is nonempty, we pick a point from
it to form {z,}. Obviously, there are infinitely many distinct points in this sequence and
it converges to z as n — oo.

(b). Assume on the contrary that the perfect set E is countable, £ = {a,},n > 1. We
have E = ;2 ;{an}. Obviously every {a,} is a closed set. On the other hand, every ball
containing a,, must contain some points different from a,,. We conclude that every {ay}
is a closed set with empty interior. However, by assumption, (F,d) is a complete metric
space. By Baire Category Theorem E cannot have such decomposition. Therefore, it must
be uncountable.

Note. Applying to R, it gives another proof that R is uncountable.

5. Let f be a real-valued function on R. Define the oscillation of f at x to be ws(x) =
lims_,g+ wy(z,d) where

wy(w,0) =sup{|f(y) — f(2) 1 y,2 € (x =6,z + )} .

a) For each p > 0, the set D ={x: w¢(x) > p} is closed.
f
b) Show that the set of all discontinuous points of f is given by D,, where D,, = {x :
n
we(x) > 1/n}.
(¢) Show that we cannot find a function which is discontinuous exactly at all irrational
numbers.
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Solution (a) As (x — 01,2 +0) C (x — b2, + 0) for 61 < 2, wy(x, ) is decreasing in 4.
Hence wf(:v,<5) >pforall x € D. Let x, € D,x, — x. We want to show = € D. Given
d > 0, for large n, x;, is contained in (x — §,z + ¢), hence there exists a small ¢’ such that
(xn — &' 2p+0") C (x — 9,z + ). It follows that w¢(z,d) > ws(zp,d’) > p. Since this is
valid for all 0, wy(x) > p, that is, x € D, so D is closed.

(b) Obvious.

(c) Suppose there is a function f which is exactly discontinuous on I. By (b), I =J,, Dn.
Since I does not contain any ball, each D,, cannot contain any ball. By (a) we conclude
that D,, = D,, is nowhere dense. On the other hand, write Q = |J,,{gn} where each {g,}
is closed and nowhere dense and express

R=1UQ=JDnU| J{am}

which shows that R is a countable union of nowhere dense sets, contradicting its complete-
ness (Corollary 4.11).

Note Recall in MATH2060 we learned that the Thomae function is continuous at all irra-
tional numbers but discontinuous at all rational numbers. It is natural to wonder if there
is function doing the opposite things. This exercise gives a negative answer.

6. Let || - || be a norm on R™.

(a) Show that ||z|| < C||z||2 for some C where || - ||2 is the Euclidean metric.

(b) Deduce from (a) that the function x + ||x|| is continuous with respect to the Euclidean
metric.

(c) Show that the inequality ||z|2 < C’|z|| for some C” also holds. Hint: Observe that
x +— ||z|| is positive on the unit sphere {z € R" : ||z||2 = 1} which is compact.

(d) Establish the theorem asserting any two norms in a finite dimensional vector space
are equivalent.

Solution. In the following we prove more generally any two norms || - || and || - | on a
finite dimensional vector space V' are equivalent, that is, there exist o, 8 > 0 such that
alv] < |lv|I" < B|lv|| for all v. Fix a basis {vi, -+ ,v,} so that each v can be uniquely
represented as > 7_; ajv;. It is easy to verify [[vfs = 4/ jag defines a norm on V.

It suffices to compare all other norms with this “Euclidean one”. We claim there exist

c1,co > 0 such that
cillvllz < flofl < eoffv]l2, Vo .

First, by Cauchy-Schwarz inequality,
loll = 1Y agoll < 3 lagllos | < \/Zai\/z o2 = callo]e
J J J J

Next, let p(v) = ||v||. We have

p(v) = p(w)] = o]l = fJwl]] < flv —w] < eaflo —w]2 .

Therefore, as v, — v in || - |2, p(vn) = @(v), which shows that ¢ is continuous in the || - ||2-
norm. As the unit sphere S = {v € V : |Jv]]2 = 1} is closed and bounded, ¢ attains its
minimum over S at some v, so p(v) = ||v]| > ¢(vg) > 0, Vv € S. For any non-zero vector
v, v/||v|l2 € S. Therefore, ||v/|v||2]| > ¢(vo), that is, ||v]| > c1]|v]]2 where ¢1 = p(v).

Note This problem is used in the proof of Theorem 4.15.
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7. Let P be the vector space consisting of all polynomials. Show that we cannot find a norm
on P so that it becomes a Banach space.

Solution. Let P, be the vector subspace of P consisting of all polynomials of degree less
than or equal to n. Then P = J;7, P,. Any norm on P, is equivalent to the “Euclidean
norm”: ||pll2 = (3r_o a?)'/? when p(z) = 3-}_, ara”. Using this fact, one can show that
P, is a closed subspace of P in any norm. On the other hand, it is clear that P, is nowhere
dense. By Baire category theorem, it is impossible to decompose P as a union of nowhere
dense sets when its induced metric is complete.

8. Let F be a subset of C'(X) where X is a complete metric space. Suppose that for each
x € X, there exists a constant M depending on z such that |f(z)|] < M, Vf € F. Prove
that there exists an open set G in X and a constant C such that sup,cq |f(z)| < C for
all f € F. Suggestion: Consider the decomposition of X into the sets X,, = {z € X :
|f(@)| <n, VfeF}

Solution. By assumption, X = (J,, X,. It is clear that each X, is closed. By the
completeness of X we appeal to Baire Category Theorem to conclude that there is some
ny such that X, has non-empty interior, call it G. Then |f(x)| < n;, Vo € G, for all
ferF.



