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Solution 10

1. Determine which of the following sets are dense, open dense, nowhere dense, of first cate-
gory and residual in R (you may draw a table):

(a) A = {n/2m : n,m ∈ Z},
(b) B, all irrational numbers,

(c) C = {0, 1, 1/2, 1/3, · · · } ,

(d) D = {1, 1/2, 1/3, · · · } ,

(e) E = {x : x2 + 3x− 6 = 0 } ,

(f) F = ∪k(k, k + 1), k ∈ N ,

Solution. (a) A is dense, not open, not nowhere dense, of first category and not residual.

(b) B is dense, not open, not nowhere dense, of second category and residual.

(c) C is not dense, not open (closed in fact), nowhere dense, of first category and not
residual.

(d) D is not dense, not open (not closed), nowhere dense, of first category and not residual.

(e) E is the finite set {(−3 +
√
33)/2, (−3−

√
33)/2}. It is not dense, not open (closed in

fact), nowhere dense, of first category and not residual.

(e) F is dense, open, not nowhere dense, of second category and residual.

Sets Dense Open dense Nowhere dense First category Residual

A ✓ ✗ ✗ ✓ ✗

B ✓ ✗ ✗ ✗ ✓
C ✗ ✗ ✓ ✓ ✗

D ✗ ✗ ✓ ✓ ✗

E ✗ ✗ ✓ ✓ ✗

F ✓ ✓ ✗ ✗ ✓

2. Determine which of the following sets are dense, open dense, nowhere dense, of first cate-
gory and residual in C[0, 1] (you may draw a table):

(a) A, all polynomials whose coefficients are rational numbers,

(b) B, all polynomials,

(c) C = {f :
∫ 1
0 f(x)dx ̸= 0} ,

(d) D = {f : f(1/2) = 1 } .

Solution. (a) A is dense (and countable too), not open, not nowhere dense, of first
category, and not residual.

(b) B is dense (and uncountable), not open, not nowhere dense, of first category and not
residual. ( B can be expressed as the countable union of Pn where Pn is the set of all
polynomials of degree not exceeding n. Each Pn is closed and nonwhere dense.)

(c) C is dense, open, not nowhere dense, of second category, and residual.

(d) D is not dense, not open (closed in fact), nowhere dense, of first category, and not
residual.
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Sets Dense Open dense Nowhere dense First category Residual

A ✓ ✗ ✗ ✓ ✗

B ✓ ✗ ✗ ✓ ✗

C ✓ ✓ ✗ ✗ ✓
D ✗ ✗ ✓ ✓ ✗

3. Use Baire category theorem to show that transcendental numbers are dense in the set of
real numbers.

Solution. A number is called algebraic if it is a root of some polynomial with integer
coefficients and it is transcendental otherwise. Let A be all algebraic numbers and T be all
transcendental numbers. We know that A is a countable set {aj}. Let An = {a1, · · · , an}
so A =

⋃
nAn is a countable union of closed and nowhere dense sets An. Hence A is of

first category. As T is the complement of A, it is a residual set. Since R is complete, T
is dense by Baire category theorem.

Alternatively, you may argue that the complement of each An is open and dense, and since
T is the intersection of all these complements, by Baire category theorem, any countable
intersection of open dense sets in a complete metric space is dense, hence T is dense.

4. A point p in a metric space X is called an isolated point if there is an open set G such
that G ∩ X = {p}, that is, {p} is open. A set E in X is a perfect set if it is closed and
contains no isolated points.

(a) For each x in the perfect set E, there exists a sequence in E consisting of infinitely
many distinct points converging to x.

(b) Every perfect set is uncountable in a complete metric space.

Solution. (a). For each n ≥ 1, as (B1/n(x) \ {x})
⋂
E is nonempty, we pick a point from

it to form {xn}. Obviously, there are infinitely many distinct points in this sequence and
it converges to x as n → ∞.

(b). Assume on the contrary that the perfect set E is countable, E = {an}, n ≥ 1. We
have E =

⋃∞
n=1{an}. Obviously every {an} is a closed set. On the other hand, every ball

containing an must contain some points different from an. We conclude that every {an}
is a closed set with empty interior. However, by assumption, (E, d) is a complete metric
space. By Baire Category Theorem E cannot have such decomposition. Therefore, it must
be uncountable.

Note. Applying to R, it gives another proof that R is uncountable.

5. Let f be a real-valued function on R. Define the oscillation of f at x to be ωf (x) =
limδ→0+ ωf (x, δ) where

ωf (x, δ) = sup{|f(y)− f(z)| : y, z ∈ (x− δ, x+ δ)} .

(a) For each ρ > 0, the set D = {x : ωf (x) ≥ ρ} is closed.

(b) Show that the set of all discontinuous points of f is given by
⋃

nDn where Dn = {x :
ωf (x) ≥ 1/n}.

(c) Show that we cannot find a function which is discontinuous exactly at all irrational
numbers.
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Solution (a) As (x − δ1, x + δ) ⊂ (x − δ2, x + δ) for δ1 < δ2, ωf (x, δ) is decreasing in δ.
Hence ωf (x, δ) ≥ ρ for all x ∈ D. Let xn ∈ D,xn → x. We want to show x ∈ D. Given
δ > 0, for large n, xn is contained in (x− δ, x+ δ), hence there exists a small δ′ such that
(xn − δ′, xn + δ′) ⊂ (x − δ, x + δ). It follows that ωf (x, δ) ≥ ωf (xn, δ

′) ≥ ρ. Since this is
valid for all δ, ωf (x) ≥ ρ, that is, x ∈ D, so D is closed.

(b) Obvious.

(c) Suppose there is a function f which is exactly discontinuous on I. By (b), I =
⋃

nDn.
Since I does not contain any ball, each Dn cannot contain any ball. By (a) we conclude
that Dn = Dn is nowhere dense. On the other hand, write Q =

⋃
n{qn} where each {qn}

is closed and nowhere dense and express

R = I ∪Q =
⋃

Dn ∪
⋃

{qn}

which shows that R is a countable union of nowhere dense sets, contradicting its complete-
ness (Corollary 4.11).

Note Recall in MATH2060 we learned that the Thomae function is continuous at all irra-
tional numbers but discontinuous at all rational numbers. It is natural to wonder if there
is function doing the opposite things. This exercise gives a negative answer.

6. Let ∥ · ∥ be a norm on Rn.

(a) Show that ∥x∥ ≤ C∥x∥2 for some C where ∥ · ∥2 is the Euclidean metric.

(b) Deduce from (a) that the function x 7→ ∥x∥ is continuous with respect to the Euclidean
metric.

(c) Show that the inequality ∥x∥2 ≤ C ′∥x∥ for some C ′ also holds. Hint: Observe that
x 7→ ∥x∥ is positive on the unit sphere {x ∈ Rn : ∥x∥2 = 1} which is compact.

(d) Establish the theorem asserting any two norms in a finite dimensional vector space
are equivalent.

Solution. In the following we prove more generally any two norms ∥ · ∥ and ∥ · ∥′ on a
finite dimensional vector space V are equivalent, that is, there exist α, β > 0 such that
α∥v∥ ≤ ∥v∥′ ≤ β∥v∥ for all v. Fix a basis {v1, · · · , vn} so that each v can be uniquely

represented as
∑n

j=1 ajvj . It is easy to verify ∥v∥2 =
√∑

j a
2
j defines a norm on V .

It suffices to compare all other norms with this “Euclidean one”. We claim there exist
c1, c2 > 0 such that

c1∥v∥2 ≤ ∥v∥ ≤ c2∥v∥2, ∀v .

First, by Cauchy-Schwarz inequality,

∥v∥ = ∥
∑
j

ajvj∥ ≤
∑
j

|aj |∥vj∥ ≤
√∑

j

a2j

√∑
j

∥vj∥2 ≡ c2∥v∥2 .

Next, let φ(v) = ∥v∥. We have

|φ(v)− φ(w)| = |∥v∥ − ∥w∥| ≤ ∥v − w∥ ≤ c2∥v − w∥2 .

Therefore, as vn → v in ∥ ·∥2, φ(vn) → φ(v), which shows that φ is continuous in the ∥ ·∥2-
norm. As the unit sphere S = {v ∈ V : ∥v∥2 = 1} is closed and bounded, φ attains its
minimum over S at some v0, so φ(v) = ∥v∥ ≥ φ(v0) > 0, ∀v ∈ S. For any non-zero vector
v, v/∥v∥2 ∈ S. Therefore, ∥v/∥v∥2∥ ≥ φ(v0), that is, ∥v∥ ≥ c1∥v∥2 where c1 = φ(v0).

Note This problem is used in the proof of Theorem 4.15.
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7. Let P be the vector space consisting of all polynomials. Show that we cannot find a norm
on P so that it becomes a Banach space.

Solution. Let Pn be the vector subspace of P consisting of all polynomials of degree less
than or equal to n. Then P =

⋃∞
n=1 Pn. Any norm on Pn is equivalent to the “Euclidean

norm”: ∥p∥2 = (
∑n

k=0 a
2
k)

1/2 when p(x) =
∑n

k=0 akx
k. Using this fact, one can show that

Pn is a closed subspace of P in any norm. On the other hand, it is clear that Pn is nowhere
dense. By Baire category theorem, it is impossible to decompose P as a union of nowhere
dense sets when its induced metric is complete.

8. Let F be a subset of C(X) where X is a complete metric space. Suppose that for each
x ∈ X, there exists a constant M depending on x such that |f(x)| ≤ M, ∀f ∈ F . Prove
that there exists an open set G in X and a constant C such that supx∈G |f(x)| ≤ C for
all f ∈ F . Suggestion: Consider the decomposition of X into the sets Xn = {x ∈ X :
|f(x)| ≤ n, ∀f ∈ F}.
Solution. By assumption, X =

⋃
nXn. It is clear that each Xn is closed. By the

completeness of X we appeal to Baire Category Theorem to conclude that there is some
n1 such that Xn1 has non-empty interior, call it G. Then |f(x)| ≤ n1, ∀x ∈ G, for all
f ∈ F .


